

Evaluation of rationality of investment

2012-04-12 Vilnius

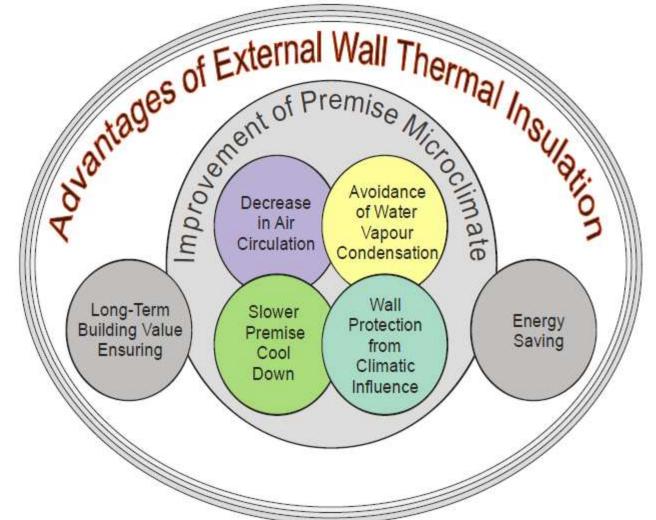
Introduction

- Do consumers behave rationally in making decisions regarding energy use and energy efficiency?
- Do observed choices reflect an optimal balance between the costs and benefits of energy-efficient technologies?
- Do people use economic criteria when purchasing appliances or when considering building shell retrofits that would reduce household fuel consumption?
- Do households minimize the present-value costs of obtaining energy services?

The topic

- What does it mean to say that consumers are or are not "rational" or that they do or do not "optimize"?
- What counts in principle as a description or explanation of people's behavior?
- What counts as evidence one way or another?
- And how do the answers translate, in principle, into guidance for policy-makers?

Multi-criteria analysis

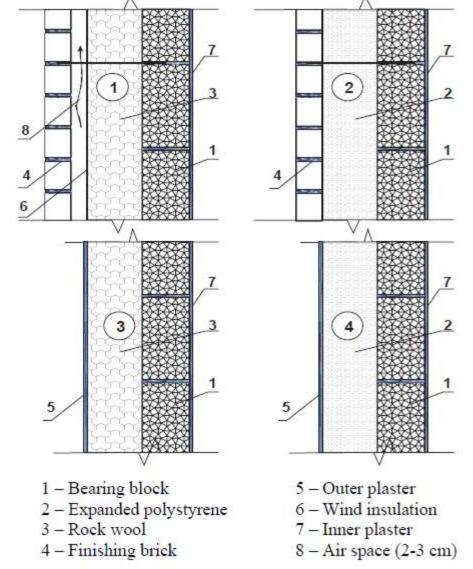

- capable of dealing with the multiple dimensions of evaluation problems;
- aim to solve conflicting social, environmental, political and economic issues;
- closely related to the way humans have always been making decisions;
- simple: a finite or infinite set of actions (alternatives, solutions, courses of action ...), at least two criteria, and, obviously, at least one decision-maker;

The main steps of multiple criteria decision making

- generating a set of evaluation criteria that relate system capabilities to goals;
- developing alternative systems for attaining the goals (generating alternatives);
- evaluating alternatives in terms of criteria (the values of the criterion functions);
- applying a normative multiple criteria method of analysis;
- accepting one alternative as "optimal" (preferable);
- if the final solution is not accepted, gather new information and go into the next iteration of multiple criteria optimization.

Advantages of thermal insulation of external walls

Facade structures of buildings should satisfy:


- Ability to function as bearing or self-bearing walls.
- High thermo-insulation properties.
- Good soundproofing.
- Moisture resistance.
- Frost resistance.
- Air permeability.
- Steam permeability.
- Sufficient light-weightiness.
- Ecological cleanliness.
- Satisfactory fireproofing.
- Durability.

Physical-mechanical properties:

- expansion and shrinkage coefficients,
- compressive and tensile strength,
- adhesion properties,
- behaviour under different types of wind load,
- behaviour under exposure to ultraviolet ray,
- difference between strain values in adjacent walls with relatively high temperature,
- variation due to different sun rays exposure and colour of the final facade coating,
- difference in aging properties of each composite in usage,
- air and steam permeability values.

Main alternatives of multi-layered external walls

Multi-layered exterior wall systems advantages:

- covers the entire building wall (except windows and doors). Provides an insulation layer over potential thermal bridges.
- Building airtightness is improved.
- Building structure is kept warm; this minimizes thermal expansion and contraction.
- The system avoids a build-up of moisture in the building cladding.

- Cost-effectiveness in application of multi-layered external walls - the most significant issue for the investor, without getting into all the inferior physical, thermo-technical and ecological properties of the usually applied facade structures.
- Three basic material configurations is considered: insulation inside or outside the massive layer, and insulation located between two massive layers.

Wall insulation is aimed:

- reducing energy consumption;
- increasing market value of buildings
- improving performance of building structures and increasing service life of a building;
- raising the comfort level in a building;
- improving architectural solutions of buildings' facades matching up with the environment.

Most effective measures of building renovation can be determined:

$$SIR = \frac{current \ value \ of \ energy \ saving, \ Lt}{\cos t \ of \ investments, \ Lt} \ge 1$$

where SIR - the efficiency of energy saving improvement.

Specific weight of the cost as a criterion reflecting economic efficiency of the suggested alternative should be not smaller than:

- 60% when cost and three or more other criteria are considered;
- 70% when cost and two other criteria are considered;
- 80% when cost and one more criterion are considered.

Thank You for Your attention!